博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
机器学习——决策树
阅读量:6259 次
发布时间:2019-06-22

本文共 12638 字,大约阅读时间需要 42 分钟。

1.决策树的构造

优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据

缺点:可能会产生过度匹配问题

适用数据类型:数值型和标称型

 

# coding:utf-8# !/usr/bin/env python'''Created on Oct 12, 2010Decision Tree Source Code for Machine Learning in Action Ch. 3@author: Peter Harrington'''from math import logimport operator#通过是否浮出水面和是否有脚蹼,来划分鱼类和非鱼类def createDataSet():    dataSet = [[1, 1, 'yes'],               [1, 1, 'yes'],               [1, 0, 'no'],               [0, 1, 'no'],               [0, 1, 'no']]    labels = ['no surfacing','flippers']    #change to discrete values    return dataSet, labelsdef calcShannonEnt(dataSet):	#计算给定数据集的香农熵    numEntries = len(dataSet)	#数据集中的实例总数    labelCounts = {}    #为所有可能的分类创建字典,键是可能的特征属性,值是含有这个特征属性的总数    for featVec in dataSet:        currentLabel = featVec[-1]        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0        labelCounts[currentLabel] += 1    #计算香农熵    shannonEnt = 0.0    #为所有的分类计算香农熵    for key in labelCounts:        prob = float(labelCounts[key])/numEntries        shannonEnt -= prob * log(prob,2) 	#以2为底求对数    #香农熵Ent的值越小,纯度越高,即通过这个特征属性来分类,属于同一类别的结点会比较多    return shannonEnt    def splitDataSet(dataSet, axis, value):    retDataSet = []    for featVec in dataSet:        if featVec[axis] == value:            reducedFeatVec = featVec[:axis]     #chop out axis used for splitting            reducedFeatVec.extend(featVec[axis+1:])            retDataSet.append(reducedFeatVec)    return retDataSet    def chooseBestFeatureToSplit(dataSet):    numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels    baseEntropy = calcShannonEnt(dataSet)    bestInfoGain = 0.0; bestFeature = -1    for i in range(numFeatures):        #iterate over all the features        featList = [example[i] for example in dataSet]#create a list of all the examples of this feature        uniqueVals = set(featList)       #get a set of unique values        newEntropy = 0.0        for value in uniqueVals:            subDataSet = splitDataSet(dataSet, i, value)            prob = len(subDataSet)/float(len(dataSet))            newEntropy += prob * calcShannonEnt(subDataSet)             infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy        if (infoGain > bestInfoGain):       #compare this to the best gain so far            bestInfoGain = infoGain         #if better than current best, set to best            bestFeature = i    return bestFeature                      #returns an integerdef majorityCnt(classList):    classCount={}    for vote in classList:        if vote not in classCount.keys(): classCount[vote] = 0        classCount[vote] += 1    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)    return sortedClassCount[0][0]def createTree(dataSet,labels):    classList = [example[-1] for example in dataSet]    if classList.count(classList[0]) == len(classList):         return classList[0]#stop splitting when all of the classes are equal    if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet        return majorityCnt(classList)    bestFeat = chooseBestFeatureToSplit(dataSet)    bestFeatLabel = labels[bestFeat]    myTree = {bestFeatLabel:{}}    del(labels[bestFeat])    featValues = [example[bestFeat] for example in dataSet]    uniqueVals = set(featValues)    for value in uniqueVals:        subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)    return myTree                                def classify(inputTree,featLabels,testVec):    firstStr = inputTree.keys()[0]    secondDict = inputTree[firstStr]    featIndex = featLabels.index(firstStr)    key = testVec[featIndex]    valueOfFeat = secondDict[key]    if isinstance(valueOfFeat, dict):         classLabel = classify(valueOfFeat, featLabels, testVec)    else: classLabel = valueOfFeat    return classLabeldef storeTree(inputTree,filename):    import pickle    fw = open(filename,'w')    pickle.dump(inputTree,fw)    fw.close()    def grabTree(filename):    import pickle    fr = open(filename)    return pickle.load(fr)        if __name__ == '__main__':    myDat,labels = createDataSet()    print myDat    print calcShannonEnt(myDat)

 

 

#通过是否浮出水面和是否有脚蹼,来划分鱼类和非鱼类def createDataSet():    dataSet = [[1, 1, 'yes'],               [1, 1, 'yes'],               [1, 0, 'no'],               [0, 1, 'no'],               [0, 1, 'no']]    labels = ['no surfacing','flippers']    #change to discrete values    return dataSet, labelsdef calcShannonEnt(dataSet):	#计算给定数据集的香农熵    numEntries = len(dataSet)	#数据集中的实例总数    labelCounts = {}    #为所有可能的分类创建字典,键是可能的特征属性,值是含有这个特征属性的总数    for featVec in dataSet:        currentLabel = featVec[-1]        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0        labelCounts[currentLabel] += 1    #计算香农熵    shannonEnt = 0.0    #为所有的分类计算香农熵    for key in labelCounts:        prob = float(labelCounts[key])/numEntries        shannonEnt -= prob * log(prob,2) 	#以2为底求对数    #香农熵Ent的值越小,纯度越高,即通过这个特征属性来分类,属于同一类别的结点会比较多    return shannonEnt

 

myDat,labels = createDataSet()print myDatprint calcShannonEnt(myDat)

 

 

2.划分数据集

def splitDataSet(dataSet, axis, value):		#按照给定特征划分数据集,axis表示根据第几个特征,value表示特征的值    retDataSet = []				#创建新的list对象    for featVec in dataSet:        if featVec[axis] == value:            reducedFeatVec = featVec[:axis]     #切片            reducedFeatVec.extend(featVec[axis+1:])	#把序列添加到列表reducedFeatVec中            #print reducedFeatVec            retDataSet.append(reducedFeatVec)		#把对象reducedFeatVec(是一个list)添加到列表retDataSet中    return retDataSet

 

def chooseBestFeatureToSplit(dataSet):		#选择最好的数据集划分方式    numFeatures = len(dataSet[0]) - 1      	#特征的数量,最后一列是标签,所以减去1    baseEntropy = calcShannonEnt(dataSet)    bestInfoGain = 0.0; bestFeature = -1	#信息增益和最好的特征下标    for i in range(numFeatures):        	#递归所有特征        featList = [example[i] for example in dataSet]	#创建一个列表,包含第i个特征的所有值        uniqueVals = set(featList)       	#创建一个集合set,由不同的元素组成        newEntropy = 0.0        for value in uniqueVals:            subDataSet = splitDataSet(dataSet, i, value)	#按照所有特征的可能划分数据集            prob = len(subDataSet)/float(len(dataSet))		#计算所有特征的可能性            newEntropy += prob * calcShannonEnt(subDataSet)             infoGain = baseEntropy - newEntropy     #计算信息增益        if (infoGain > bestInfoGain):       	#比较不同特征之间信息增益的大小            bestInfoGain = infoGain         	#选取信息增益大的特征            bestFeature = i    return bestFeature                      	#返回特征的下标

 

3.递归构建决策树

 

def createTree(dataSet,labels):		#创建决策树的函数,采用字典的表示形式    classList = [example[-1] for example in dataSet]    if classList.count(classList[0]) == len(classList): 	#如果类别完全相同则停止继续划分        return classList[0]    if len(dataSet[0]) == 1: 					#遍历完所有特征时返回出现次数最多的        return majorityCnt(classList)    bestFeat = chooseBestFeatureToSplit(dataSet)		#选择信息增益最大的特征下标    bestFeatLabel = labels[bestFeat]				#选择信息增益最大的特征    myTree = {bestFeatLabel:{}}    del(labels[bestFeat])					#从标签中删除已经划分好的特征    featValues = [example[bestFeat] for example in dataSet]	#取得该特征的所有可能取值    uniqueVals = set(featValues)				#建立一个集合    for value in uniqueVals:        subLabels = labels[:]               myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)	#递归createTree    return myTree

 

myDat,labels = createDataSet()myTree = createTree(myDat,labels)print myTree{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

 

 

4.在Python中使用Matplotlib注解绘制树形图

myDat,labels = createDataSet()print myDatimport treePlottertreePlotter.createPlot(myTree)  #绘制树形图

 

 

5.构造注解树

 获取叶节点的数目和树的层数

import matplotlib.pyplot as pltdecisionNode = dict(boxstyle="sawtooth", fc="0.8")leafNode = dict(boxstyle="round4", fc="0.8")arrow_args = dict(arrowstyle="<-")def getNumLeafs(myTree):		#获取叶子节点的数目    numLeafs = 0    firstStr = myTree.keys()[0]    secondDict = myTree[firstStr]    for key in secondDict.keys():        if type(secondDict[key]).__name__=='dict':	#测试节点的数据类型是否为字典            numLeafs += getNumLeafs(secondDict[key])	#递归        else:   numLeafs +=1				#如果不是字典,则说明是叶子节点    return numLeafsdef getTreeDepth(myTree):		#获取树的层数    maxDepth = 0    firstStr = myTree.keys()[0]    secondDict = myTree[firstStr]    for key in secondDict.keys():        if type(secondDict[key]).__name__=='dict':	#测试节点的数据类型是否为字典,如果不是字典,则说明是叶子节点            thisDepth = 1 + getTreeDepth(secondDict[key])	#递归        else:   thisDepth = 1				        if thisDepth > maxDepth: maxDepth = thisDepth    return maxDepth

 绘制树形图

 

 

def plotNode(nodeTxt, centerPt, parentPt, nodeType):	#绘制带箭头的注解    #annotate参数:nodeTxt:标注文本,xy:所要标注的位置坐标,xytext:标注文本所在位置,arrowprops:标注箭头属性信息    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',             xytext=centerPt, textcoords='axes fraction',             va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )    def plotMidText(cntrPt, parentPt, txtString):		#在父子节点间填充文本信息    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)def plotTree(myTree, parentPt, nodeTxt):		#if the first key tells you what feat was split on    numLeafs = getNumLeafs(myTree)  			#计算宽与高    depth = getTreeDepth(myTree)    firstStr = myTree.keys()[0]     			#the text label for this node should be this    print plotTree.xOff    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)    print parentPt    print cntrPt    plotMidText(cntrPt, parentPt, nodeTxt)		#标记子节点属性值    plotNode(firstStr, cntrPt, parentPt, decisionNode)    secondDict = myTree[firstStr]    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD	#减少y偏移    for key in secondDict.keys():        if type(secondDict[key]).__name__=='dict':	#test to see if the nodes are dictonaires, if not they are leaf nodes               plotTree(secondDict[key],cntrPt,str(key))        #recursion        else:   #it's a leaf node print the leaf node            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD#if you do get a dictonary you know it's a tree, and the first element will be another dictdef createPlot(inTree):			#绘制树形图,调用了plotTree()    fig = plt.figure(1, facecolor='white')    fig.clf()    axprops = dict(xticks=[], yticks=[])    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks    #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses     plotTree.totalW = float(getNumLeafs(inTree))	#存储树的宽度    plotTree.totalD = float(getTreeDepth(inTree))	#存储树的深度    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;    plotTree(inTree, (0.5,1.0), '')    plt.show()

 

 

测试和存储分类器

1.测试算法:使用决策树执行分类

def classify(inputTree,featLabels,testVec):	#使用决策树的分类函数    firstStr = inputTree.keys()[0]    secondDict = inputTree[firstStr]    featIndex = featLabels.index(firstStr)	#将标签字符串转换为索引    key = testVec[featIndex]    valueOfFeat = secondDict[key]    if isinstance(valueOfFeat, dict):         classLabel = classify(valueOfFeat, featLabels, testVec)    else: classLabel = valueOfFeat    return classLabel

 

myDat,labels = createDataSet()    Labels = labels    print "myDat="    print myDat    print "labels="    print labels    import treePlotter    myTree = treePlotter.retrieveTree(0)	#绘制树形图    print myTree    print classify(myTree,Labels,[0,1])

 

 2.使用算法:决策树的存储

def storeTree(inputTree,filename):	#使用pickle模块存储决策树    import pickle    fw = open(filename,'w')    pickle.dump(inputTree,fw)    fw.close()    def grabTree(filename):			#查看决策树    import pickle    fr = open(filename)    return pickle.load(fr)

 

myDat,labels = createDataSet()    Labels = labels    print "myDat="    print myDat    print "labels="    print labels    import treePlotter    myTree = treePlotter.retrieveTree(0)	#绘制树形图    print myTree    storeTree(myTree,'classifierStorage.txt')    print grabTree('classifierStorage.txt')

 

示例:使用决策树预测隐形眼镜类型

 

import treePlotter    import simplejson    import ch    ch.set_ch()    from matplotlib import pyplot as plt    fr = open('lenses.txt')    lenses = [inst.strip().split('\t') for inst in fr.readlines()]	#读取一行数据,以tab键分割并去掉空格    lensesLabels = [u'年龄',u'近远视',u'散光',u'眼泪等级']			#使用unicode,不然编码会报错    lensesTree = createTree(lenses,lensesLabels)    print simplejson.dumps(lensesTree, encoding="UTF-8", ensure_ascii=False)	#使用simplejson模块输出对象中的中文    treePlotter.createPlot(lensesTree)

 

转载地址:http://obnsa.baihongyu.com/

你可能感兴趣的文章
升级fedora 18到fedora 19
查看>>
【代码小记】无
查看>>
BarTender 2016表单中的“秤显示”控件
查看>>
11月20日学习内容整理:jquery插件
查看>>
Arduino入门之前
查看>>
Redis客户端集群
查看>>
javascript基础篇:函数
查看>>
SVN与TortoiseSVN实战:补丁详解
查看>>
java一些面试题
查看>>
干货型up主
查看>>
获取页面中所有dropdownlist类型控件
查看>>
读《淘宝数据魔方技术架构解析》有感
查看>>
rm 命令(转)
查看>>
[禅悟人生]真知从实践中来
查看>>
Chrome 报 Resource interpreted as Script but transferred with MIME type text/plain 警告的解决办法...
查看>>
memcpy的使用方法总结
查看>>
[转载]如何破解Excel VBA密码
查看>>
【BZOJ】3757: 苹果树
查看>>
递归函数的概念使用方法与实例
查看>>
cf451C-Predict Outcome of the Game
查看>>